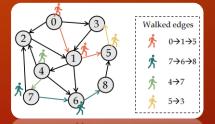
BOOSTING DATA CENTER PERFORMANCE VIA INTELLIGENTLY MANAGED MULTI-BACKEND DISAGGREGATED MEMORY

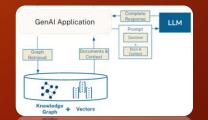
Jing Wang, Hanzhang Yang, Chao Li*, Yiming Zhuansun, Wang Yuan, Cheng Xu, Xiaofeng Hou, Minyi Guo, Yang Hu, Yaqian Zhao

Shanghai Jiao Tong University, Tsinghua University, IEIT SYSTEMS Co., Ltd jing618@sjtu.edu.cn

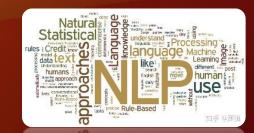
"

- 1. Background
- 2. Motivation
- 3. System Design
- 4. Experimental Result
- 5. Conclusion and Future Work

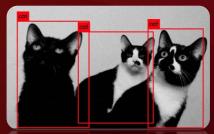

"


- 1. Background
- 2. Motivation
- 3. System Design
- 4. Experimental Result
- 5. Conclusion and Future Work

1. Background: Growing Application Data



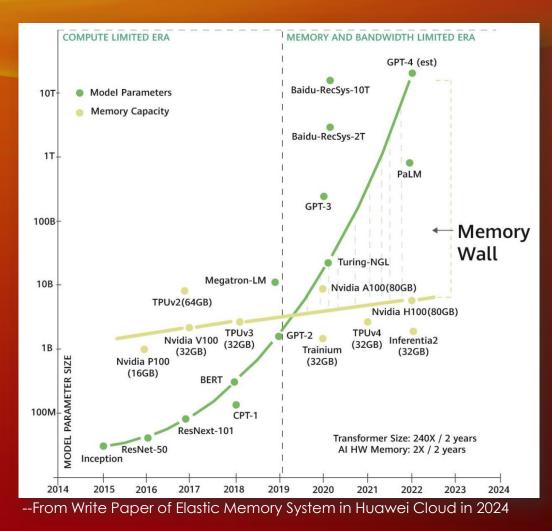
Graph Netural Network Knowledge Retrieval


- Data Scale of Graph Processing:
- Tens of Billion of Vertices
- Hundreds of Billion of Edges

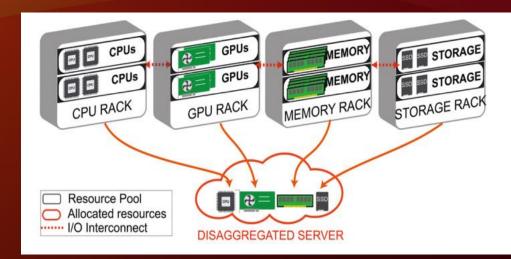
Natural Language Processing

Speech Recognition

Computer Vision


AI Generated Content

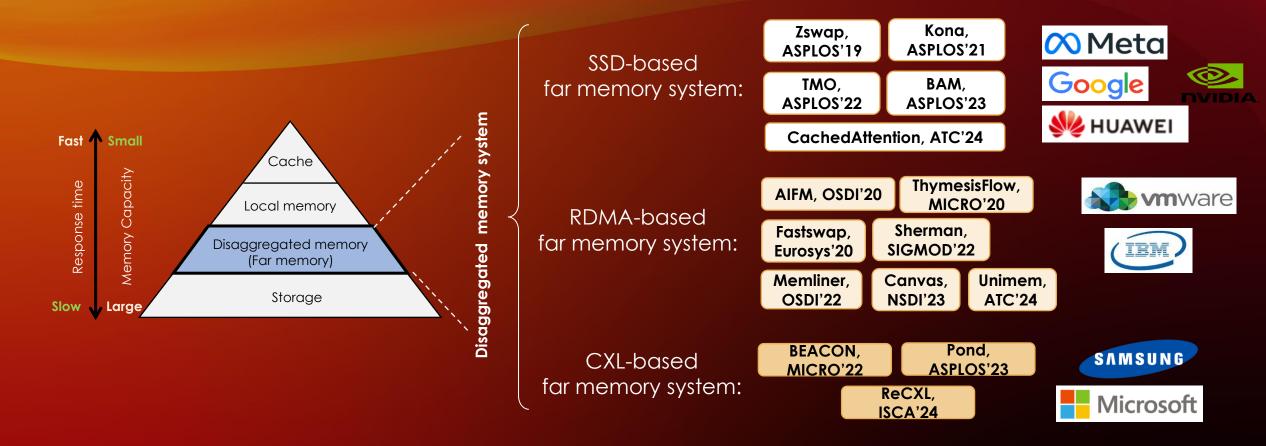
Data Scale of AI training/inference:


- Billions of Model Parameters
- Trillions of Tokens

Data centers necessitate large memory capacity and efficient data management.

1. Background: Disaggregated Architecture

Calling for Elastic and Intelligent memory system

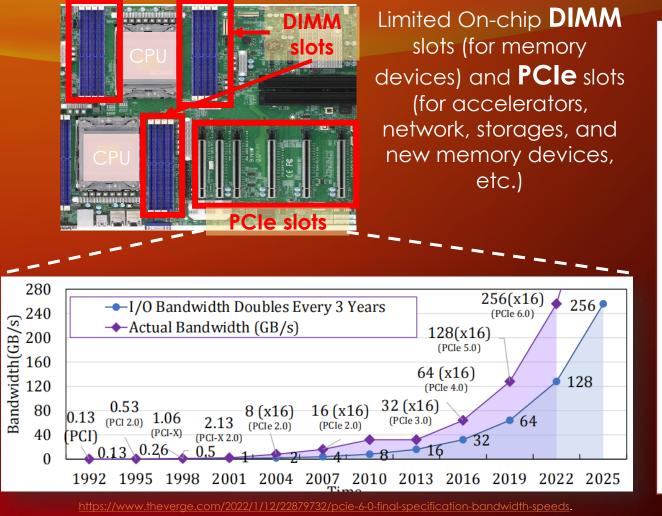


Disaggregated architecture

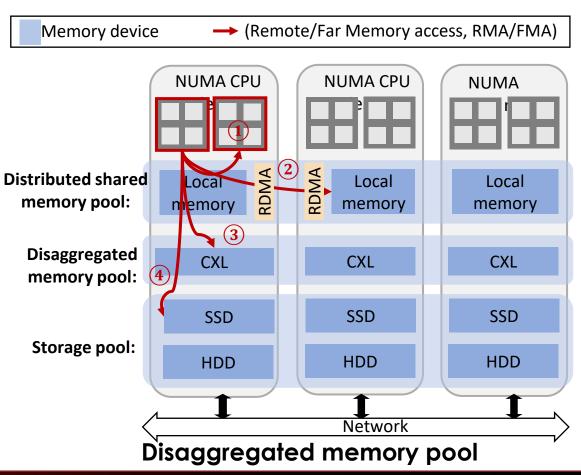
- Large capacity
- Flexibility
- Scalability

Disaggregated architecture can provides large memory pools.

1. Background: Disaggregated Memory Related Works

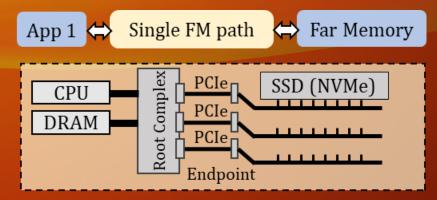

While the addition of far memory (FM) could relieve a server's memory pressure, it unfortunately cannot meet the needs of high data/task throughput in today's data center.

11/15/2024 6

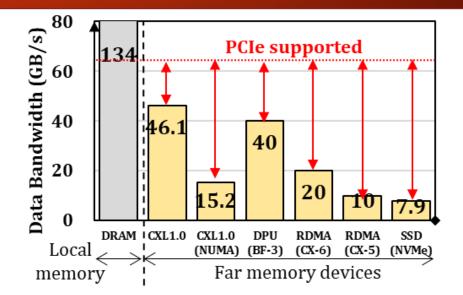

"

- 1. Background
- 2. Motivation
- 3. System Design
- 4. Experimental Result
- 5. Conclusion and Future Work

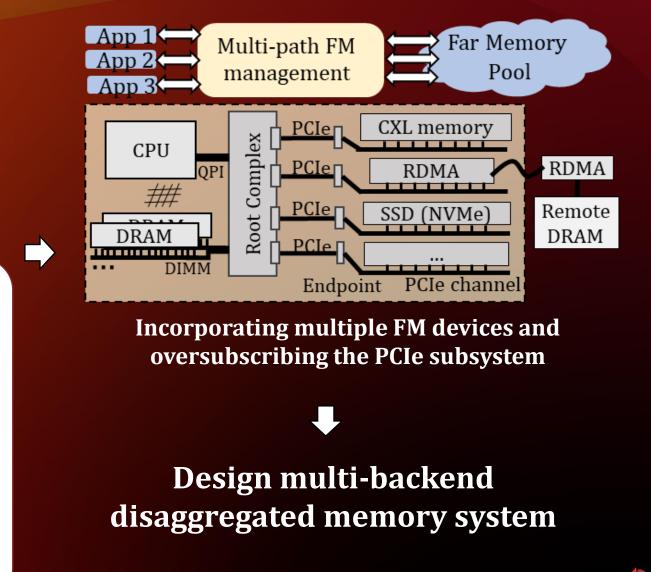
2. Motivation: Memory Extension Ways



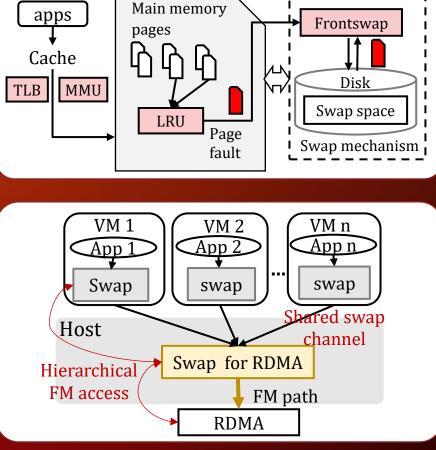
PCIe bandwidth grows faster than estimated I/O trends

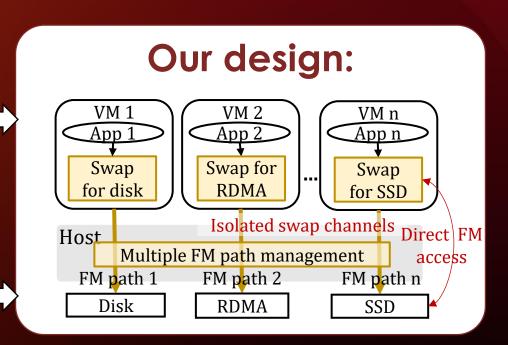


Memory extension ways (Far memory paths)


2. Motivation: From Single to Multiple Channels

Prior works limit their designs on a single FM device.

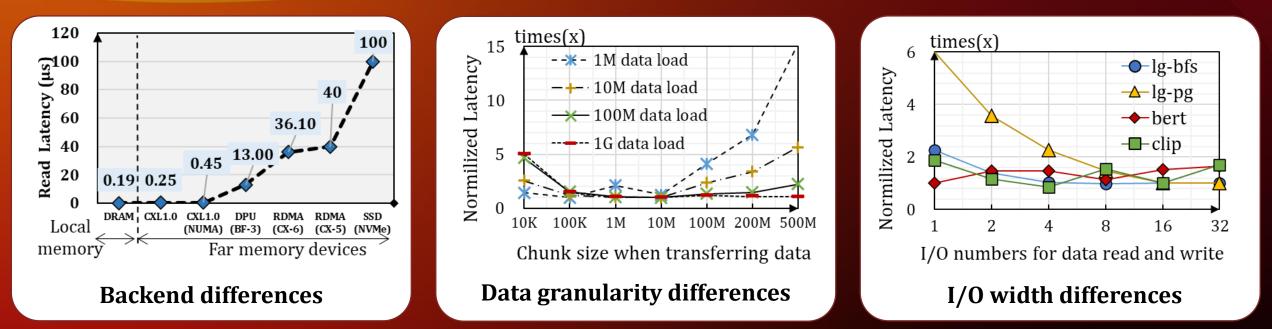

Single far memory device could become a crucial bottleneck due to data bandwidth limitation.



2. Motivation: Design Challenge of Multiple backends

(1). Far Memory Usage Bottleneck: Existing FM management schemes are blind to the possible multiple physical FM channels: logically only support one data exchange path to FM devices.

- Existing works rely on OS-level page swap design that cannot allow pages to be swapped to/from multiple backends.
- Existing technics with virtual machines (VMs) still use a hierarchical data swap mechanism with the host operating system (OS) involved.



Design Opportunities:

- Allow direct memory/storage access
- Support isolated swap channels
- Support parallel far memory access paths

2. Motivation: Design Challenge of Multiple backends

(2). Far Memory Usage Effectiveness: Most of the prior works follow a simple idea: by offloading part of data to far memory based on workload behaviors, ignoring more complex far memory configurations.

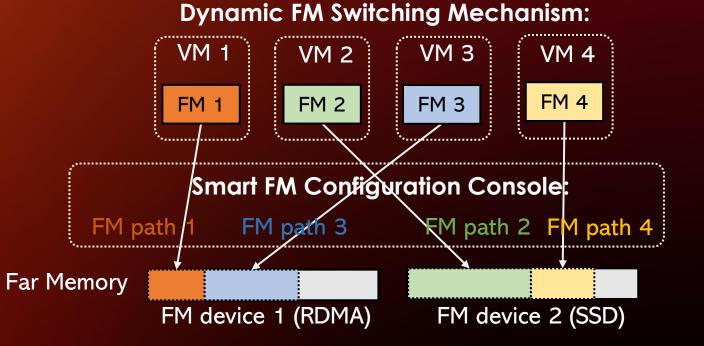
Design Opportunities:

Resource awareness: Design a system that can choose proper backends for each application

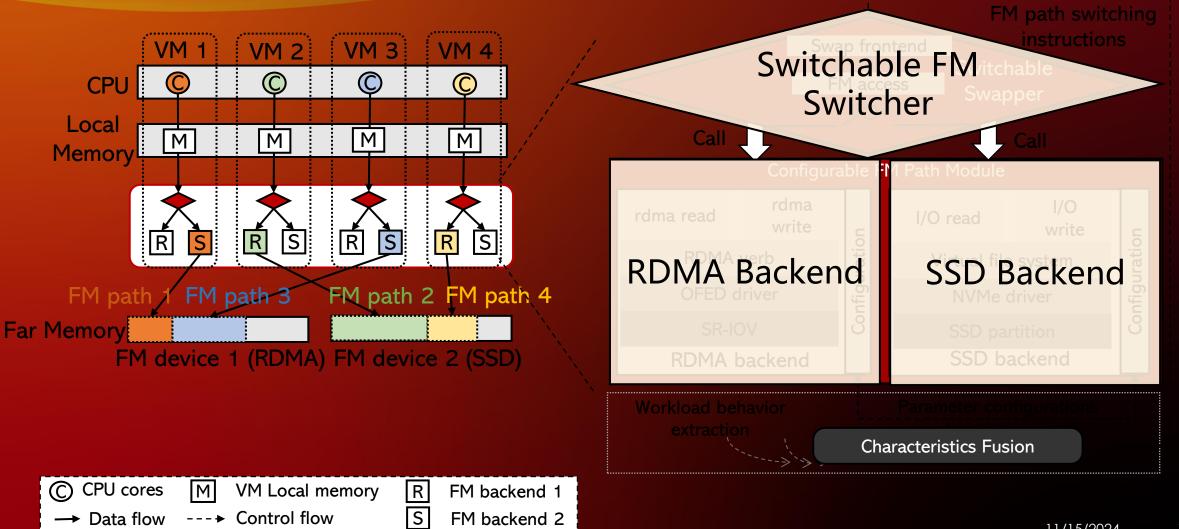
-> Lower cost

- Application awareness: Providing a system that support multiple-dimensional parameter configuration
 - -> Higher performance

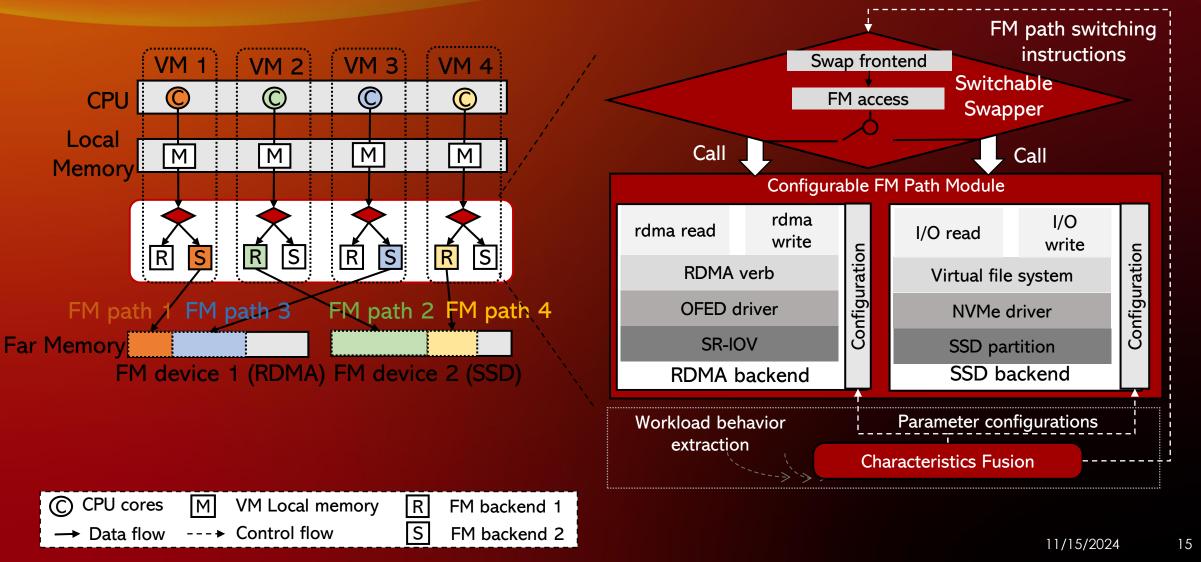
"


- 1. Background
- 2. Motivation
- 3. System Design
- 4. Experimental Result
- 5. Conclusion and Future Work

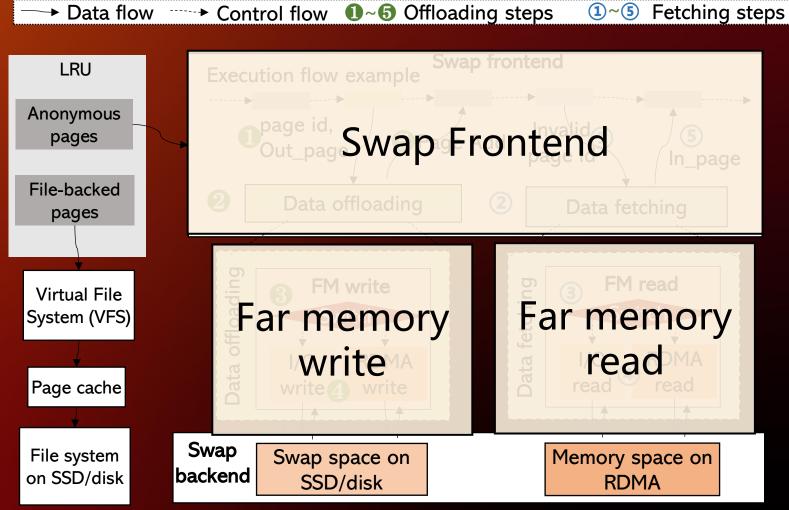
3. XDM System Design Design philosophy:


(1). Make it dynamic and implicit.
In this work, we aim to make the system
dynamic: each instance can evaluate task
preferences during runtime and implicitly
select the optimal FM path without the
need of user intervention.

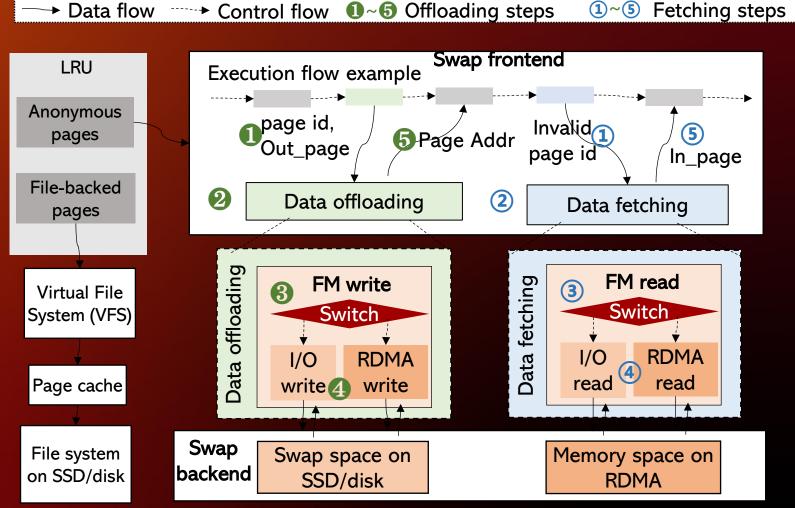
(2). Make it versatile and smart. It is important to leverage a rich set of application **page data** and adjust system settings based on **multi-dimensional** system information, including data distribution, data granularity, as well as I/O characteristics.


We Propose xDM, an Intelligently Managed Multi-backend Disaggregated Memory System.

3.1 Dynamic FM Switching Mechanism:



3.1 Dynamic FM Switching Mechanism:

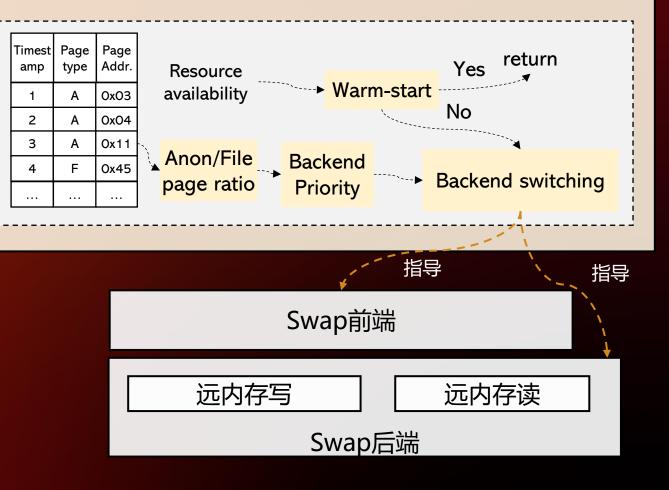

3.1 Dynamic FM Switching Mechanism:

- Swap Frontend:
 - Out_Page
 - In_page
- Swap Backend:
 - Data offloading : far memory write
 - Data fetching: far memory read

3.1 Dynamic FM Switching Mechanism:

- Swap Frontend:
 - Out_Page
 - In_page
- Swap Backend:
 - Data offloading : far memory write
 - Data fetching: far memory read

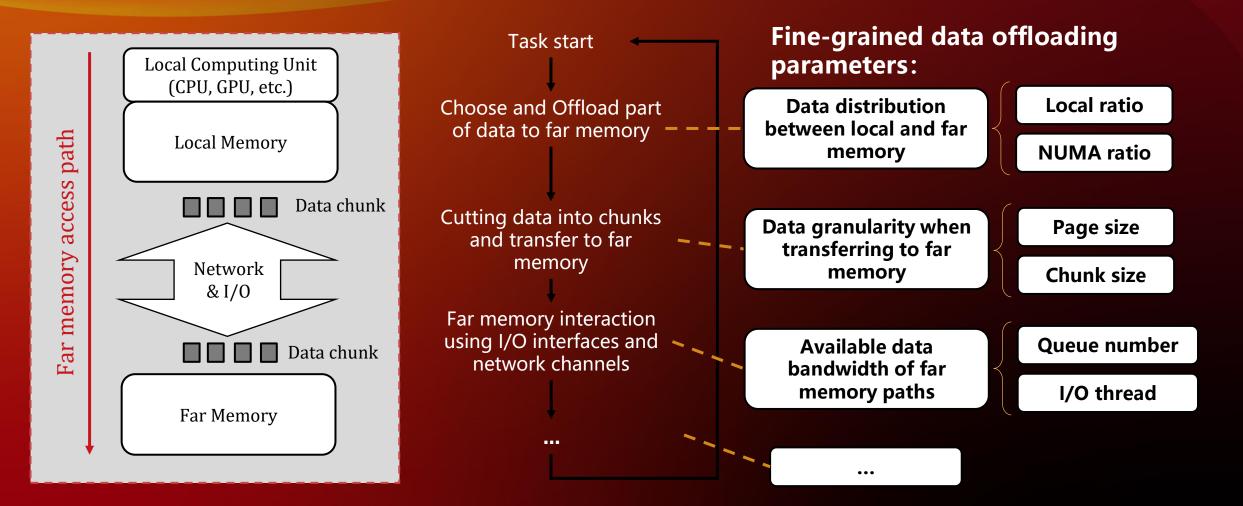
3.1 Dynamic FM Switching Mechanism:


(1). Low-overhead, switchable FM swapper

(2). Efficient, implicit FM switching strategy

Workloads with more file-backed (anonymous) pages prefer SSD (RDMA) backends.

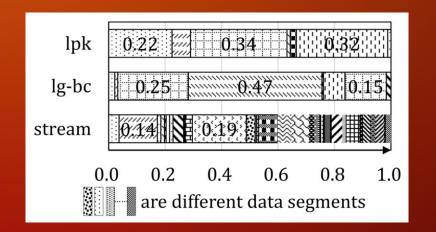
FM switching strategy

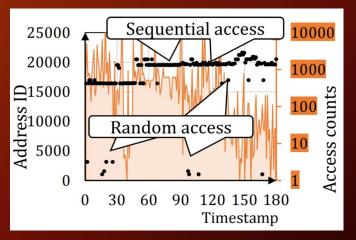


"

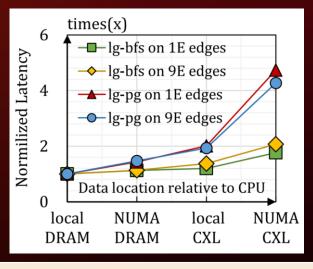
The above design includes the basic implements of multi-backend disaggregated memory system, i.e. enabling **Dynamic FM Switching Mechanism**.

The following configuration design of the far memory access path is to make the best backend usage effectiveness, i.e. making **Smart FM Configuration Console.**


3.2 Smart FM Configuration Console

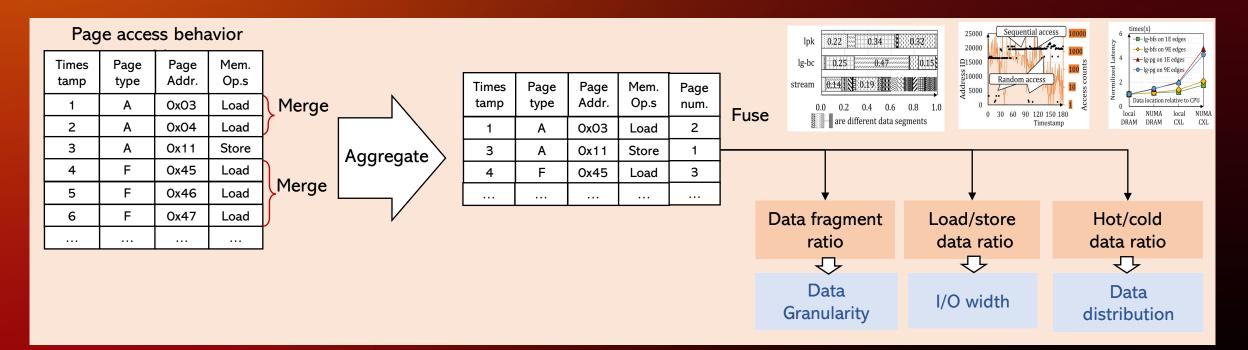

11/15/2024 20

3.2 Smart FM Configuration Console


(1). Data Characteristic Fusion: perceive task characteristics using page-based transparent approach By analyzing **page** data, we find that data granularity, I/O width, and data distribution significantly impact the performance and resource usage.

Feature 1: Data segments distribution (influenced by data fragment ratios)

Feature 2: Sequential and random page access (influenced by data load/store ratio)

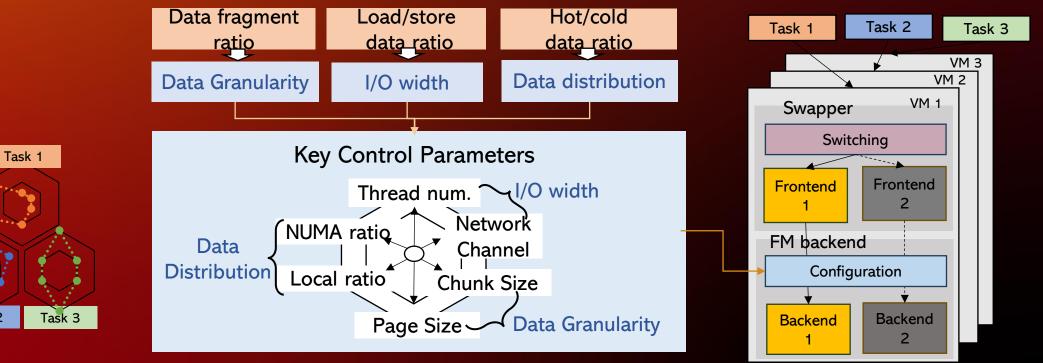


Feature 3: Data distribution (influenced by hot/cold data ratio)

3.2 Smart FM Configuration Console

(1). Data Characteristic Fusion: perceive task characteristics using page-based transparent approach

By analyzing **page** data, we find that data granularity, I/O width, and data distribution significantly impact the performance and resource usage.


3.2 Smart FM Configuration Console

(1). Data Characteristic Fusion

Task 2

(2). FM Parameter Adjustment: Parameter configuration shares similar data feature extraction ideas but different implementation methods on far memory backends:

- Data granularity: size of data units transferred via RDMA (i.e. chunk size) or data blocks on SSD (i.e. page size).
- I/O width: assigning CPU cores related to I/O channels on SSD and network channels of RDMA.
- Data distribution: adaptively setting far memory ratio and NUMA memory nodes.

23

Workflow:

- *i).* Far memory initialization
- *ii). Offline preparation*
- iii). VM allocation and warm start
- iv). FM path selection and switching
- v). FM parameter configuring

A	gorithm 1: Multi-backend FM System Workflow.
L	nput: Application set: A, online VM set: OVs, free VM set: FVs
R	Result: All applications have been efficiently dispatched
1 fe	or a in A do
2	$f_a = page_feature_extraction(a)$
3	$b_a = backend_selection(f_a, system_pressure)$
4	List p_a = parameter_optimization(f_a)
5	for Online_VM in OVs do
6	if $Online_VM.backend = b_a$ AND $Online_VM.accept(a)$
	then
7	dispatch a \rightarrow Online_VM
8	Online_VM.OptParameters (p_a)
9	break
10	if no available online VM then
11	for Free_VM in FVs do
12	if $Free_VM.backend = b_a AND Free_VM.accept(a)$
	then
13	dispatch a \rightarrow Free_VM
14	Free_VM.OptParameters(p_a)
15	break
16	else if no available idle VM with b_a then
17	$Free_VM \leftarrow SelectVM(FVs)$
18	Free_VM.SwitchBackend(b_a)
19	Free_VM.OptParameters(p_a)
20	dispatch a \rightarrow Free_VM
21	else if no available idle VM AND host resource is available
	then
22	Free_VM \leftarrow CreateVM(b_a , system_pressure)
23	Free_VM.OptParameters (p_a)
24	dispatch $a \rightarrow Free_VM$
25	add Free_VM \rightarrow Vs

"

- 1. Background
- 2. Motivation
- 3. System Design
- 4. Experimental Result
- 5. Conclusion and Future Work

Hardware and Software Testbed

Physical machine:

Memory node server Computing/Memory node server RDMA NIC PRAM CPUs SSD(PCIe) SSD(M.2, U.2, SATA, etc.) HDD (SATA)											
RDMA-based far memory Conf.	Block-device-based far memory Tools										
Memory limtation	Cgroup2										
RDMA driver	OFED v4.3.0,RoCE										
RDMA far memory	Fastswap										
CXL far memory	NUMA simulation										
SSD far memory	VFS I/O										

Evaluated 17 types of workloads

HPC workloads, graph workloads, AI workloads

Туре	Abbr.	Max Mem.	
Ś	stream	Stream [52] for memory bandwidth	4G
Dad	lpk	Linpack [53] for floating-point computing	4G
HPC klc	kmeans	K-means clustering on sklearn [48]	4G
HPC workloads	sort	Quicksort [53] on c++ std	8G
2	sp-pg	Page rank on Spark [2]	10G
	gg-pre	Graph preprocess on GridGraph [47]	16G
ds	gg-bfs	Breadth-first search on GridGraph [47]	16G
aph loa	lg-bfs	Breadth-first search on Ligra [1]	16G
Graph workloads	lg-bc	Betweenness centrality [1]	16G
M	lg-comp	Connected components [1]	16G
	lg-mis	Multiple importance sampling [1]	16G
	tf-incep	Resnet inception on Tensorflow [45]	1G
\mathbf{S}	tf-infer	Resnet inference on Tensorflow [45]	1G
ad	tf-tc	CNN inference on text classification [46]	10G
AI workloads	bert	Inference on Bert [7]	1.5G
VOL	clip	Inference on Clip [6]	1.7G
2	chat-int	Inference on ChatGLM [5] (int4)	14G

Baseline configurations:

Related works	Far memory	Max BW	FM size
Linux swap [42]	disk	2 GB/s	2T
TMO [37]	SSD	7.9 GB/s	1T
Fastswap [27]	RDMA	10 GB/s	256G
XMemPod [40]	DRAM or RDMA	10 GB/s	1 T
xDM-SSD	multiple SSD	32 GB/s	1 T
xDM-RDMA	multiple RDMA	32 GB/s	256G
xDM-Hetero	RDMA and SSD	32 GB/s	1.3T

Tunable FM parameters in our system:

Parameter	Offline Conf.	Online Conf.	Scale
Total CPU core	Yes	No	\leq Total CPU cores
Local memory size	Yes	No	\leq Server memory size
NUMA memory	Yes	No	Different NUMA nodes
Far memory ratio	Yes	Yes	$0\sim 0.9$
Page size	Yes	Yes	$4K \sim 2M$ on average
Network channel	Yes	Yes	\leq Total I/O channels

Functional Comparison:

Related works	to Block Device	to RDMA	Hybrid	Multi-path
Linux zswap [42]	\checkmark	Х	×	X
Fastswap [27]	Х	\checkmark	×	×
TMO [37]	\checkmark	×	\checkmark	×
XMemPod [40]	\checkmark	\checkmark	\checkmark	×
Pond [31]	\checkmark	×	×	×
xDM (Ours)	\checkmark	\checkmark	\checkmark	\checkmark

TABLE I: Single-path vs. multi-path far memory systems.

Related works	Data Ratio on FM	Data Ratio on NUMA	Data Granularity	I/O Width
Linux zswap [42]	\checkmark	Х	Х	X
Fastswap [27]	\checkmark	×	×	×
TMO [37]	\checkmark	×	×	×
XMemPod [40]	\checkmark	×	×	×
Pond [31]	\checkmark	\checkmark	×	×
xDM (Ours)	\checkmark	\checkmark	\checkmark	\checkmark

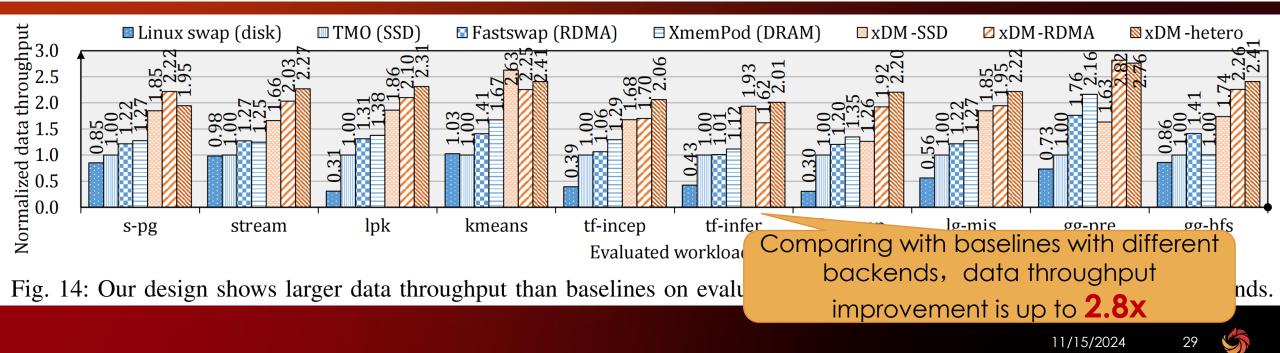
Our system add more dimensions of system parameter analysis and configuration.

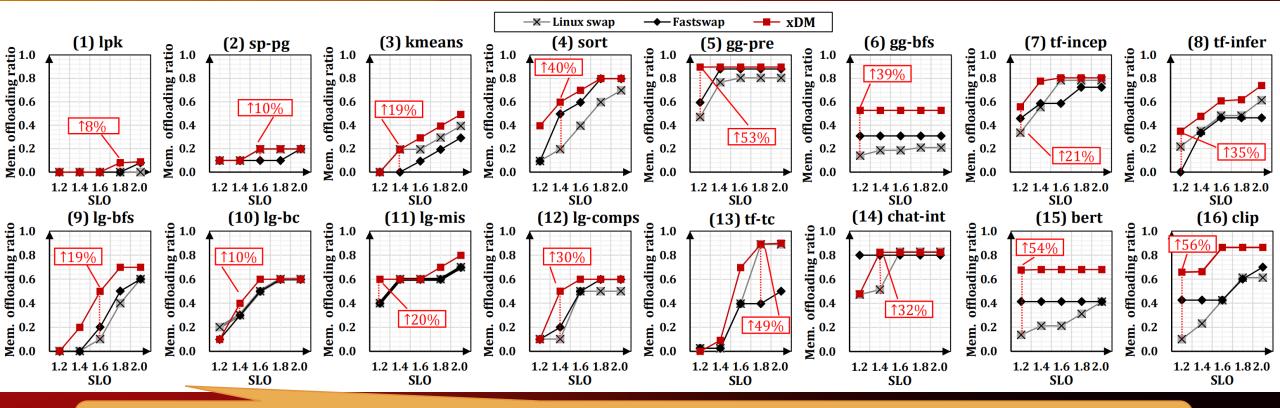
Our System can

support parallel multi-

path far memory

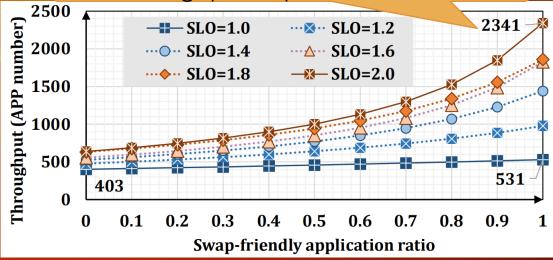
access.

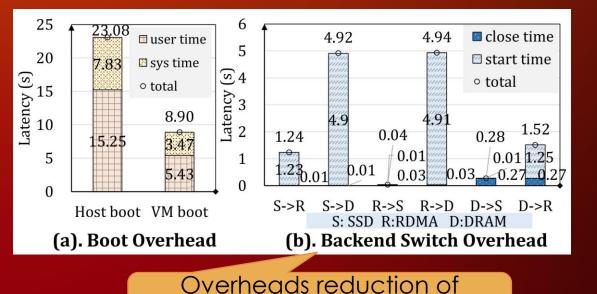

TABLE II: Comparison of key tuning knobs of far memory configuration used in related works.

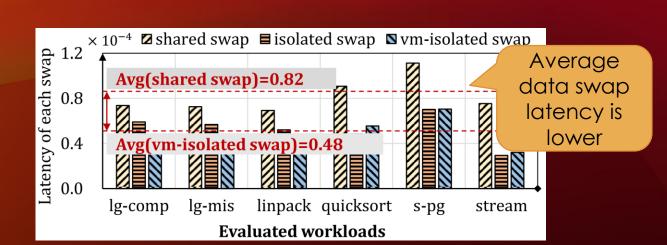

Evalauted Workload	stream	lpk	kmeans	sort	s-pg	gg-pre	gg-bfs	lg-bfs	lg-bc	lg-comp	lg-mis	tf-infer	tf-incep	clip	tf-tc	chat-int	bert
Swap Feature	S	S	S	S	S	F	S	F	F	F	F	F	F	S	F	F	S
Sp. on DRAM	1.32×	$1.18 \times$	1.64 ×	$1.05 \times$	1.44 ×	2.24×	1.29 ×	2.00×	2.16×	2.43 ×	2.17 ×	1.88×	1.72×	$0.82 \times$	$1.28 \times$	1.15×	$1.03 \times$
Sp. on SSD	1.01×	1.52×	$0.88 \times$	0.86×	1.01×	1.02×	1.18×	1.40×	$1.42\times$	1.52×	1.36×	1.51×	1.34×	0.91×	2.16×	1.92×	1.75×
Sp. on RDMA	1.25×	$1.09 \times$	$1.40 \times$	1.40 ×	1.37×	$2.06 \times$	1.19×	2.24×	2.26×	$2.22\times$	2.07×	2.70×	2.53×	2.46 ×	2.55×	3.89 ×	1.10×
Average Speedup	1.19×	1.26×	1.31×	1.11×	1.28×	1.77×	1.22×	1.88×	1.95×	$2.05 \times$	1.86×	2.03×	1.86×	1.40×	$2.00\times$	2.32×	1.29×

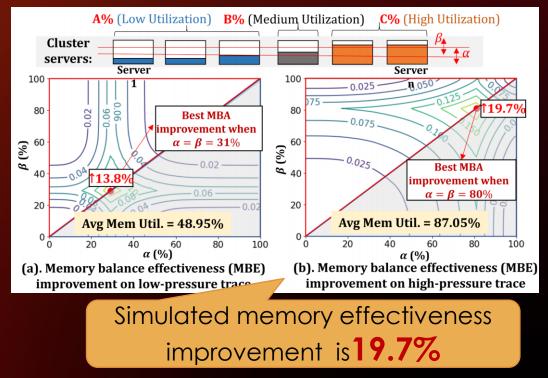
ines

ition


TABLE VI: The swap performance speedup (Sp.) of our xDM compared include Linux swap [42] on SSD backend, Fastswap [27] on RDMA and DI swap features into two types: swap-sensitive (S, average Sp. $\leq 1.5 \times$) and Under same Latency, swap performance speedup is ~3.9x






Under same latency (SLO), Our system can have larger offloadable data ratio, saving up to **5x** local memory resource.

Task throughput improvement is ~5.1x

backend switching is **2.6x**

31

"

- 1. Background
- 2. Motivation
- 3. System Design
- 4. Experimental Result
- 5. Conclusion and Future Work

5. Conclusion and Future Work

Take away message:

- we design and implement xDM, a novel **multi-backend far memory system** with high bandwidth utilization and application performance.
- By turning the conventional swap mechanism into a switchable data swap module, we successfully realize simultaneous multi-path FM access.
- Based on a rich **fusion of application page data**, we tailor the far memory path configurations to the needs of various applications.
- Our design provides a **flexible solution** to scale out far memory access paths and an efficient way to manage them on monolithic servers.

Available on Github: <u>https://github.com/linginluli/Multi-backend-DM</u>

Future works:

- Data compression on far memory
- Hardware-aid data temperature detection
- High performance data caching and indexing design
- Multi-path GPU far memory system

THANK YOU!

44

QUESTION AND ANSWERING

Jing Wang, contact me at <u>jing618@sjtu.edu.cn</u> <u>Shanghai Jiao Tong University</u>

